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A computer simulation method for sintering 
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A new simulation method for sintering in three-dimensional powder packings is presented. 
The model is based on two-particle sintering interactions and is able to describe mass transport 
mechanisms based on grain-boundary diffusion as well as on lattice diffusion. It is shown that the 
simulation method provides an adequate description of structural reorganization effects which 
occur during the early stage of sintering. Simulation results are presented for the sintering of 
a random packing and of some crystalline-type packings in which various initial defects have been 
created, 

1. I n t r o d u c t i o n  
The modelling of sintering processes has a history that 
goes back more than 45 years [1]. One of the main 
challenges through these years, has been to predict the 
structural reorganization effects, which occur during 
the sintering of irregular packings [2-5]. These reor- 
ganization effects lead to large fluctuations in the 
amount of shrinkage, and therefore have an enormous 
influence on the strength of the sintered material. 
Reorganization takes place when angles between con- 
necting lines of particle centres change. The change in 
angle is typically a many-particle result: the process at 
one junction influences the net results at another. 
Note that for this to happen, different necks them- 
selves need not overlap. Sintering models developed 
by other authors [6-81 have in common that the 
particle packing is treated essentially as an entity in 
the analysis of the sintering kinetics. Such a treatment 
either rules out the description of the effects of local 
inhomogeneities [6] or raises problems of topological 
character [7, 8]. 

The aim of the present work was the modelling of 
structural reorganization effects taking place in the 
early stage of sintering. A many-particle simulation 
model is presented, in which the sintering kinetics are 
described by a summation of local two-sphere interac- 
tions. This approach ensures that the simulation 
scheme, in principle, can be applied to any initial 
packing and that topological constraints intrinsically 
are obeyed. 

The two-sphere interaction model is a description of 
the local mechanism of sintering at one grain-bound- 
ary area. In the past, many models for the two-sphere 
interaction have been proposed. In general, these 
models are based on thermodynamic and atomistic 
considerations, combining concepts of the driving 
force, i.e. minimization of the free energy of the sur- 
face, with material transport mechanisms. Well- 
known are the interaction models suggested by Coble 
[9] and Kingery and Berg [10] involving mass trans- 
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port through grain-boundary diffusion, lattice diffu- 
sion and surface diffusion. Models based on material, 
transport through viscous flow and through evapor- 
ation and recondensation have also been developed. 
A survey of these models can be found in the review 
paper by Exner [-11]. In the present simulation 
scheme, any of these models can be implemented; the 
only restriction being that the neck formation is 
coupled to centre-to-centre approach: 

The simulation scheme and its implementation is 
described first. Next, the simulations of sintering of 
a random packing and of some typical crystalline 
packings with various initial defects are presented and 
discussed. 

2. M e t h o d  
Consider a system of N equal spheres, each with 
radius R. The position of the ith particle at time t is 
denoted by r~(t). As a result of local interactions with 
adjoining spheres, the coordinates of a sphere will 
change in time. The net displacement of a sphere i is 
given by 

dri(t) _ ~ f ( r l j )~ i j  (1) 
dt i ~ j  

Here, rij = ri - rj, ~ij is the unit vector in the direction 
of rq. The summation is restricted to particles j in 
contact with particle i, i.e. f ( r l j )  = 0 for rq > 2R. The 
funetionf(r,-j) represents the local two-particle sinter- 
ing interaction and will be discussed below. An iter- 
ative numerical integration scheme with discrete time 
steps At is employed to describe the configurational 
change during the sintering process_ The time depen- 
dency of r~(t) is approximated by the Taylor expansion 

1 
ri(t + At) = ri(t ) + v i ( t )At  + ~ a,(0(At) 2 + O(At) 3 

(2) 
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Using the Adams-Bashforth two-step method for in- 
tegration [12], i.e. setting 

ai(t) = [ v i ( t ) -  vi(t - A t ) ] / A t  (3) 

and substituting Equation 1 into Equation 2, one 
obtains 

ri(t + At) = r~(t) + At ~ {3 i~ j  ~ f [ r i j ( t ) ]  

~ f [ r i j ( t -  At)]} ~,j (4) 

We now turn to the local two-sphere interaction 
model in which the mechanisms of the sintering are 
incorported. In Fig. 1 a section along a line between 
the centres of two spheres is shown. In general, the 
neck growth can be written as a rather simple function 
of time 

R " (5) 

where m and n are exponents. The constant CM con- 
tains physical quantities as surface tension, diffusivity 
and temperature. With the approximation h = pZ/4R 
this can be rewritten as 

(~ )" /2  -- 2 ~ i m  t (6) 

where 9 is the neck radius, h is the interpenetration 
distance and t is the sintering time, cf, Fig. 1. In his 
review paper, Exner [11] has shown that the approxi- 
mation h = p2/4R is applicable to situations far be- 
yond the limit of p / R  < 0.3. Hence, for the initial and 
intermediate stages o f  sintering, the approximation is 
valid. 

It is now an easy matter to derive an expression for 
the local functions f(r~j). For two interpenetrating 
spheres we can write 

rlj = 2R -- 2hij (7) 

and hence 

drij _ 2 dhij (8) 
dt dt 

We have added the subscript ij to h in order to 
emphasize the fact that we are dealing with a pair 
property. From Equation 6 we find 

dhij _ CM 
dt n2" - 1R(2m -,)/2 hi1; - ,/2 (9) 

or  

dr i ~  = CM hi -,/2 (10) 
dt n2" - 2 R(2m -n)/2 --ij 

With dro /d t  = 2f(rij), we now can express f [r i j ( t ) ]  in 
terms of h o 

CM 
f[r i j ( t ) ]  = -- n2,_lR(2, ,_ , ) /2  hr (11) 

With this result, the description of the simulation 
scheme is complete. Summarizing: at each given time 
t the value h~j(t) is calculated from each pair of touch- 
ing spheres. Equations 4 and 11 then are used to 
update the coordinates and the whole procedure is 
repeated for time t + At. 

The mechanism of vacancy diffusion from the ,,neck 
zone determines the expression used for C~t, and the 
values for the exponents m and n. CM, n and m can be 
derived from theoretical considerations, but very often 
they are obtained from experiments. Ranges for these 
exponents, as well as plausible values for C~t are given 
in the review by Exner [11]. In general, several diffu- 
sion mechanisms will occur at the same time and 
a linear combination of interaction models may be 
used. Models discussed by Exner include grain- 
boundary diffusion and lattice diffusion. For  grain- 
boundary diffusion, with physical constant C~, the 
values of the exponents are m = 4 and n = 6, leading 
to 

CG hi~2(t ) (12) f [ r i j ( t ) ]  - 3.26 R 

For  lattice diffusion, with physical constant CL, the 
values are m = 3 and n = 4, and hence 

CL hi j  l(t). (13) f [r l j ( t ) ]  - 32R 

\, / 
% . ,  

Figure 1 The two-body sintering model. 

Both these models are implemented in the present 
sintering program. The extension to other interaction 
models is straightforward. 

To start the calculation, f [ r l j (  - At)] is assumed to 
be zero. A singularity exists when h~ is zero as may 
easily occur at the start of the simulation. Therefore, in 
all calculations we replace hij by (h~ + aR) where ~ is 
an arbitrarily small number. The simulation ends 
either when a given maximum number of time steps 
has been achieved or when at some instance, locally, 
for one pair ij, a limiting value of h ~ j R  is exceeded. 
The resulting configuration then can be analysed by 
calculating various characterizing quantities. In order 
to monitor configurational changes, several structural 
characteristics such as the overall shrinkage, the co- 
ordination number, Gz, and the  densification, z~, of 
every particle, are evaluated every nm time steps. In 
this paper, the external sizes of the packing, deter- 
mined by the extremes of the coordinates of the par- 
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ticles, are used for the evaluation of the shrinkage of 
the packing during the sintering. The densification 
parameter, zl, of particle i, is defined as 1-13] 

2n .~ 1 
L (14) 

Zi : G i  [rij[ 
j = l  

where the coordination number Gi is the number of 
neighbours j, with ]rljl < 2R. The local density, Pi, 
associated with particle i then is p~ = poZ~ a where Po is 
the initial bulk density. The above mentioned limiting 
value of h i j / R  corresponds to Zlim. By definition 

R 
Zlim R - h !ira (15) 

~tJ 

In practice, this parameter will be used in the simu- 
lations in order to determine where a run should be 
stopped. 

3. De ta i l s  o f  t h e  s i m u l a t i o n s  
The simulations are started by building a three-dimen- 
sional configuration consisting of a close packing of 
several hundreds of spherical particles. In this paper, 
we present simulations of regular, crystalline packings 
in which defects in the form of interfaces and vacancies 
are introduced, and a simulation of a random packing. 
At this initial stage, each particle is touching 
(Irljl = 2R) one or more neighbours. Now (at time 
t = 0), for each particle i, a list is made in which all 
neighbouring particles j with Ir~jl -< RN are stored. In 
this paper, we have used RN = 2 x ~ R .  In order to 
reduce computational efforts, we do not update these 
lists but we assume that during the entire simulation, 
only the particles contained in its initial neighbour list 
can interact (i.e. can come in contact) with a certain 
particle. 

Then we start the simulation of the sintering kin- 
etics. The net displacement of each particle i is cal- 
culated for many iteration steps, using Equation 4. 
The simulation examples in this paper are restricted to 
sintering processes controlled by grain-boundary dif- 
fusion; i.e. using Equation 12 as an expression for 

f ( r i j  ). An experimentally obtained value for alumina, 
has been..substituted for Cc. As mentioned, we only 
have to evaluate hij for particles j which are in the 
initial neighbour list of particle i, which implies that 
the consumption of computer time increases linearly 
with N, the total number of particles. 

The required computer time can be reduced further 
if one realizes that the sintering velocity is known to 
decrease exponentially. This velocity decrease justifies 
a likewise increase of the time step, At, after each 
iteration, n, i.e. At,+1 =Ato ' 10  ta"). Ato has to be 
chosen sufficiently small in order to obtain a reliable 
simulation of the crucial first stage of the sintering 
process. The value of a has been chosen such that 
At, = 1 s for n = 5000 (see Table I). However, it may 
occur that during the sintering process, new contacts 
are created. In order to prevent unrealistic large dis- 
placements on both sides of this new grain boutldary, 
the time step (for all particles) is set back to Ato after 
such an event. After sufficiently many time steps (typi- 
cally of the order 104 ) the simulation is terminated. 
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A run of 20 000 time steps and 450 particles, required 
about 10 min CPU time on a Convex C-230 com- 
puter. 

The crystalline model systems, we have simulated in 
this study, can be characterized as follows. Basic enti- 
ties are (almost square) sections of the {0 0 1} planes in 
a fc c crystal, each consisting of 45 particles and with 

an external dimension of 9 x//2R x 8 x/~R (see Fig. 2). If 
A refers to the (00 1) plane and B to the (002) plane, 
then a stacking sequence of ABABAB... (and a dis- 

tance between the planes equal to x//2R gives rise to 
a face centred cubic (fcc) structure; AAAAA .... (and 
with plane distance 2R) yields a simple cubic (sc) 
structure and .... ABABABAAAAAA .... describes a 
fc c-s c interface. In these structures, additional defects 
are created by removing from the central layer of 
a row of particles in either the (1 00), (0 1 0) or the 
(1 1 0) direction. 

The random packing that has been simulated, was 
generated by using a deposition model and a con- 
secutive compression model, described in a previous 
paper [ 14]. In the packings generated by these models, 
the particles do not touch their neighbours exactly; 
therefore, we have used for packing number 8 a value 
for ~ that is slightly larger than for the simulations of 
the crystalline packings. Because the random packing 
is build up within a finite container, wall effects cause 
the mean volume fraction of this structure before 

T A B L E  I Numerical values for parameters used in this work 

C o / R  4 4.1 x ! 0 - S s  - l a  
e 1.0 x 10- 3 for the crystalline-type packings 

5.0 x 10- 3 for the random packing. 
Ato 1.0 • 10-13R4/C G s 

Rn 2 x ~ R  
a 2.10-41og(1/Ato) (resulting in At. = 1 s for n = 5000) 
n m 4000 
Znm 1.15 

a Experimentally determined, non-isothermal bulk shrinkage for 
alumina ( T =  1500~ the corresponding mean particle size, R, 
measured with a Malvern Mastersizer, was 0.6 ~tm. 

t 

6 5 

X 

Figure 2 Basic layer A. The numbers refer to the structures in which 
the corresponding particles have been removed from the central 
layer. 



T A B L E I I Characteristics of the model structures used in this work 

Structure Stacking sequence Defects a Number  of External size (R 3) G ~ . .  
{0 0 1 } planes particles 

X x Y x Z  

Mean volume fraction b 

1 AAAAAAAAAA None 450 14.728 x 13.314 x 20.000 5.0000 0.4806 
2 ABABABABAB None 450 14.728 x 13.314 x 14.728 9.6400 0.6527 
3 AAAAABABAB I 450 14.727 x 13.314x 17.657 7.0622 0.5444 
4 ABABAAAAAABABAB I 675 14.728 x 13.314 x 25.314 7.8163 . 0.5696 
5 ABABAAAAAABABAB I + 51110] 670 14.728 x 13.314 x 25.314 7.8060 0.5654 
6 ABABAAAAAABABAB I + 91010] 666 14.728 x 13.314 x 25.314 7.8198 0.5620 
7 ABABAAAAAABABAB I + 51100] 670 14.728 x 13.314 x 25.314 7.8179 0.5654 
8 Random packing 1000 17.000 x 17.000 x 29.796 3.4120 0.4864 

aThe defects refer to an interface (I) or to a missing row of particles in the layer that is central in the Z direction. 511 10] implies that in lhat 
layer, starting from (X, Y) = (0, 0), a row of five particles in the [1 1 0] direction are missing. (See also Fig. 2.) 
bThe mean volume fraction is determined by the external dimensions of the simulation box. Owing to finite size effects, these values are 
smaller than for bulk materials. (For sc  structures cf 1, the bulk value is 0.524 and for f c c  structures cf 2, the bulk value is 0.740. 

sintering to be rather modest: 0.49. The value of the 
mean volume fraction is further reduced by the cir- 
cumstance that the method of compression is less 
efficient at the top of the packing than at the bottom. 
In the lower regions of the packing, densities up to 
0.60 can be observed. 

In Table II, the pre-sintering characteristics of the 
model structures that we have simulated, are briefly 
presented. It should be noted that the external sizes of 
the packings, presented in this table, are upper limits 
determined by the extremes of the X, Y and Z coor- 
dinates of the particles and taking into account the 
radii of the particles. Consequently the volume frac- 
tions given can be considered as lower limits of the 
bulk values. 

4. Results and discussion 
The sintering simulation of each packing, described in 
Table II, has been continued until somewhere in the 
structure the limiting value of z (Zllm = 1.15) has been 
achieved. The crystalline type structures typically need 
a few thousand time steps to reach Ziim. During these 
sintering processes, no new particle contacts are cre- 
ated. The random packing, however, shows a rather 
different behaviour. Right from the beginning of the 
sintering, new particle contacts are created. Because 
At is set back to its initial value, Ato, each time a new 
particle contact arises, a larger number of time steps is 
required to simulate the same real sintering time as for 
the crystalline type packings. In fact, the simulation of 
the random packing required an amount of 370000 
time steps. 

The other sintering characteristics also show a quite 
different behaviour for the crystalline type structures 
than for the random packing. These differences are 
due to the fact that the crystalline type packings con- 
sist of one large cluster of connecting particles, where 
the random packing, due to its formation history, 
consists of many clusters of various size. Conse- 
quently, a displacement of a particle in a crystalline 
type packing will affect the position of all other par- 
ticles of that packing, but in the random packing, the 
effect of a displacement of a particle is very local: it is 
restricted to the other particles of the same cluster. 

In Table III, two typical sintering characteristics are 
presented: the real sintering time of the simulations 
and the volume shrinkage. In order to compare the 
sintering times of the packings, one should keep in 
mind that these sintering times, in fact, are determined 
by the fastest contracting pairs in the packing. The net 
displacement of a particle (see Equation 1) will be 
large if the position of its neighbours has a low mirror 
symmetry with respect to any plane through the par- 
ticle itself. In regular crystalline packings, such par- 
ticles are found near the surface but in the non-regular 
packings (3-7) such particles are also found in the 
vicinity of the interfaces or near vacancy defects. In 
the random packing, it is very probable that the pairs 
with the fastest contraction are present: isolated clus- 
ters consisting of two particles. These pairs are respon- 
sible for the very short sintering t ime of this structure. 
Later in this paper, we will provide some evidence for 
the existence of these small clusters. For  the s c pack- 
ing, a particle at the surface experiences only a :net 
inward interaction from one particle, where for the fc c 
packing this number is 4. This explains the difference 
in the sintering times of structures 1 and 2. The intro- 
duction of an interface (structures 3 and 4) creates 
particles with even more net inward interacting neigh- 
bours; these particles can be found at the surface of the 
fc c sides of the interface. These interfaces, therefore, 
further decrease the sintering time. As the vacancy 
defects, introduced in structures 5-7, are present in the 

T A B L E  [ I I  Volume shrinkage and sintering times of the model 
structures 

Structure Length shrinkage a (%) Sintering time(s) 

X Y Z 

1 94.2 94.0 94.5 28.1 
2 81.7 80.2 81.7 16.4 
3 84.2 83.5 84.3 11.5 
4 84.3 83.7 88.1 11.5 
5 87.1 86.3 90.3 11.5 
6 86.0 85.9 90.1 11.5 
7 88.4 87.1 91.5 9.6 
8 99.9 99.9 99.9 3.0 

a The largest dimensions are taken into account. 
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s c layers, they do not contribute very much to the 
displacement of the particles with the largest inward 
motion because these particles still can be found in the 
fc c layers. This is reflected in net sintering times which 
are almost the same as for structures 3 and 4. 

As mentioned above, the short sintering time for the 
random packing is most probably due to the presence 
of small, isolated clusters in this structure. These iso- 
lated clusters, which will also be present near the 
surface of the packing, are also responsible for the 
small shrinkage of the total volume as we have defined 
it. Because of their isolation, the net inward displace- 
ment of these clusters will be very small, keeping the 
outer volume of the whole packing almost unchanged. 
The behaviour of the volume shrinkage of the regular 
crystalline packings (1 and 2) is in accordance with 
their mean coordination number. The volume shrink- 
age of packing 3 is a mixture of the shrinkage of 1 and 
2, where it should be taken into account that the 
shrinkage in the s c layer of the packing is enhanced by 
the presence of the f cc  layer, which in its turn has 
a somewhat lower shrinkage than a regular fc c pack- 
ing. For  packing 4, a similar reasoning can be made, 
except for the shrinkage in the Z direction. Here, it can 
be noticed that the presence of two fc c layers, one at 
the top of and one below the sc layer, results in 
a nearly zero contraction of the s c layer in the Z direc- 
tion. Finally, the volume shrinkage of packings 5, 
6 and 7 show that the introduction of defects in the 
form of vacancies, locally may enhance the shrinkage 
but has a detrimental effect on the shrinkage of the 
outer volume. 

Another interesting parameter of the sintering pro- 
cess is 2 . . . .  . In Fig. 3 this parameter is plotted as 
a function of the sintering time for all simulated struc- 
tures, z . . . . .  better than the volume shrinkage as we 
have defined it, indicates the contraction of the net  

volume occupied by a packing. It can be observed that 
the minimum real volume shrinkage is obtained for 
the s c packing (1) where the fc c structure (2) yields the 
maximum real volume shrinkage. The net volume 
shrinkage of the other packings, including the random 

packing, is somewhere between these two extremes. 
Taking the s c packing (1) as a reference, we see that 
the random packing has a higher Z,,ean where its vol- 
ume shrinkage is samller. This indicates that in the 
random packing, the pores have grown bigger. This is 
also the case for packings 5, 6 and 7, for which the 
volume shrinkage is smaller than for the vacancy-free 
packings 3 and 4, but which have a z . . . .  that is 
slightly larger. 

As mentioned already, the mean coordination num- 
ber of the random packing increases directly from the 
beginning of the simulation. In Fig. 4, G . . . .  is plotted 
versus the sintering time. It can be observed that 
G . . . . .  after a fast initial increase, grows rather slowly 
and even seems to go into saturation for sintering 
times beyond the present simulation time. Anyway, it 
is rather unlikely that the mean coordination number 
for this random packing will ever exceed a value of 4.0. 
This indicates that this random packing, after sinter- 
ing, consists of many isolated clusters of particles. In 
Fig. 5, the distribution of the particles in the random 
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Figure 4 Mean coordination number  of the random packing (8) 
versus sintering time. 
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Figure 5 Distribution of coordination numbers in the random 
packing before and after sintering compared with that for the s c 
structure (1). 



Figure 6 Local density prameter, z. (a) The vertical diagonal plane of structure 5, (b) the middle X Z  plane of structure 6, and (c) the middle YZ 
plane of structure 7. 
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Figure 6 (continued) 

packing, according to their coordination number is 
shown. In order to allow a comparison with the s c 
structure (1), we also plotted the data beginning to this 
structure. The majority of the particles in the s c struc- 
ture, of course, has a coordidnation number of 6; 
particles with lower coordination can be found at the 
surface of the packing. The random packing shows 
a significant amount of particles with one or two 
nearest neighbours. Further, it can be observed that, 
even after sintering, no particles with coordination 
number higher than 8 are present. Again, this indicates 
that this packing consists of many small clusters. 

Finally, some features of the sintered structures will 
be discussed qualitatively. In Fig. 6a, the density para- 
meter, zl, in the vertical diagonal (X = Y) plane of 
structure 5 is shown. This plot has been obtained by 
imposing a 100 x 200 grid on this plane. Each grid 
point has been assigned the z value of the nearest 
particle if it is overlapped by one or more particles and 
receives the value 0 if it is not covered by any particle. 
Before sintering, the particles in the second and the 
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fourth (fcc) layer from the bottom and from the top 
did not cut the depicted plane but in the sintered 
structure the particles have moved through this plane 
and what we actually see in the second and the fourth 
layer of the stacking are the cross-sections of the necks 
of these particles. The row of vacancies is situated in 
the depicted plane and thus appears as a gap. It can be 
observed that, during the sintering, this gap has 
widened and this widening is most enhanced at the 
surface of the packing. The local density, as could be 
expected, increases going from the centre to the sur- 
face of the packing but in the third plane from the 
bottom and in the third plane from the top, some 
particles with an extraordinary density can be ob- 
served. These provide a nice example of the effects that 
local defects (in this case: a row of five vacancies) can 
have on the sintering behaviour of the bulk material in 
the near vicinity of the defects. Fig. 6b represents the 
middle X Z  plane of structure 6 after sintering. The 
small gap at the right side of the structure is due to 
a vacancy in the middle of a row of nine, perpendicular 



Figure 7 Cross-section of the random packing 8, (a) before sintering, (b) after sintering. 

to the plane of the paper and its width has increased 
due to the sintering. Again, next to an overall contrac- 
tion controlled by the external surface of the packing, 
local inhomogeneities in the density caused by the 
vacancy defects can be observed. Fig. 6c shows the 
density parameter z in the middle YZ plane of struc- 
ture 7 after sintering. In this plane, the parts with the 
fc c structure appear rather massive because the plane 
cuts two rows of particles in each layer. Again, 
a widening of the gap and density fluctuations in the 
region surrounding the gap, can be observed. Finally 
in Fig. 7, we show a vertical slice of the random 
packing, before and after sintering. The two pictures 
provide some examples of the sintering-induced 
formation of isolated particles and isolated clusters of 
particles, as mentioned above. 

5. Conclusions 
A new simulation model for sintering in three-dimen- 
sional powder compacts is presented. Based on two- 
sphere sintering interactions, the model represents 
a multi-particle approach of structural reorganization 
effects, occurring during sintering, in packings of 
spherical particles. The simulations of the powder 
compacts used in this work (based on crystalline struc- 

tures) show that the model adequately describes the 
reorganization effects that may result from local de- 
fects that are present before sintering. 

R e f e r e n c e s  
1. J. FRENKEL,  J. Phys. (USSR) 9 (1945) 385. 
2. G. PETZOW and H. E. EXNER, Z. Metallkde 67 (1976) 611. 
3. M.W.  WEISER and L. C. DE JONGHE,  J. Am. Ceram. Soc. 

69 (1986) 822. 
4. E . G .  L INIGER and R. RAY, Commun. Am. Ceram. Soc. 79 

(1988) C-408. 
5. ldem, Sci. Sinterin9 21 (1989) 109. 
6. E. ARZT, Aeta Metall. 30 (1982) 1883. 
7. J.. W. ROSS, W. A. MILLER and G. C. WEATHERLY,  ibid. 

30 (1982) 203. 
8. H . J .  LEU, T. HARE and R. O. S C A T T E R G O O D ,  ibid. 36 

(1988) 1977. 
9. R .L .  COBLE, J. Appl. Phys. 32 (1961) 787. 

10. W . D .  KINGERY and M. BERG, ibid. 26 (1955) 1205. 
11. H .E .  EXNER, Rev. Powder Metall. Phys. Ceram. 1 (1979) 1. 
12. S .E.  K O O N I N  and D. C. MEREDITH,  in "Computat ional  

Physics" (Addison-Wesley New York, 1990) p. 29. 
13. H . J .  VERINGA,  J. Mater. Sci. 26 (1991) 5985. 
14. W. SOPPE,  Powder Technol. 62 (1990) 189. 

Received 17 November 1992 
and accepted 8 July 1993 

761 


